Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Total Environ ; 800: 149605, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1351833

ABSTRACT

The COVID-19 pandemic and the ensuing socioeconomic crisis has impeded progress towards the UN Sustainable Development Goals (UN-SDGs). This paper investigates the impact of COVID 19 on the progress of the SDGs and provides insight into how green recovery stimulus, driven by circular economy (CE)-based solid waste management (SWM) could assist in attaining the intended targets of UN-SDG. It was understood in this review that the guiding principles of the UN-SDGs such as, public health, environmental concerns, resource value and economic development are similar to those that have driven the growth of waste management activities; thus, in order to achieve the goals of UN-SDG, a circular economy approach in solid waste management system should be prioritized in the post-COVID economic agenda. However, policy, technology and public involvement issues may hinder the shift to the CE model; therefore, niche growth might come from developing distinctive waste management-driven green jobs, formalizing informal waste pickers and by focusing in education and training of informal worker. The review also emphasized in creating green jobs by investing in recycling infrastructure which would enable us to address the climate change related concerns which is one of the key target of UN- SDG. The CE-based product designs and business models would emphasize multifunctional goods, extending the lifespan of products and their parts, and intelligent manufacturing to help the public and private sectors maximise product utility (thus reducing waste generation) while providing long-term economic and environmental benefits. The study also recommended strong policies that prioritized investments in decentralization of solid waste systems, localization of supply chains, recycling and green recovery, information sharing, and international collaboration in order to achieve the UN-SDGs.


Subject(s)
COVID-19 , Refuse Disposal , Waste Management , Humans , Pandemics , Recycling , SARS-CoV-2 , Solid Waste/analysis , Sustainable Development , United Nations
2.
J Environ Chem Eng ; 8(5): 104317, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-694359

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic coronavirus 2019 disease (COVID-19). The outbreak of COVID-19 as Public Health Emergency of International Concern is declared by World Health Organization on January 30, 2020. The known route of transmission is due to direct contact or via respiratory droplets. Recently, several studies reported SARS-CoV-2 ribonucleic acid (RNA) in wastewater treatment plant samples. The presence of SARS-CoV-2 RNA in wastewater may predict COVID-19 occurrence qualitatively and quantitatively. The concept is known as wastewater-based epidemiology (WBE) or sewage epidemiology. The present study reviewed the presence of coronavirus in wastewater and investigations relating to WBE development as a tool to detect COVID-19 community transmission. Few articles reported a correlation of SARS-CoV-2 RNA concentration in wastewater with the number of COVID-19 cases, whereas few reported higher prediction by wastewater surveillance than confirmed cases. The application of WBE is still in a preliminary stage but has the potential to indicate an early sign of transmission. The knowledge of persistence of coronavirus in municipal and hospital wastewater is needed for the application of WBE and to understand the chances of transmission. The studies reported more prolonged survival of coronavirus in low-temperature wastewater. Studies relating to the inactivation of coronavirus by disinfectants and removal of coronavirus are also presented. Research on the performance of the commonly adopted disinfection technologies in inactivating SARS-CoV-2 in municipal and hospital wastewater is required to reduce the risk associated with municipal and hospital wastewater.

3.
Sci Total Environ ; 750: 141514, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-693500

ABSTRACT

The advent of the COVID-19 pandemic has enhanced the complexities of plastic waste management. Our improved, hyper-hygienic way of life in the fear of transmission has conveniently shifted our behavioral patterns like the use of PPE (Personal protective equipment), increased demand for plastic-packaged food and groceries, and the use of disposable utensils. The inadequacies and inefficiencies of our current waste management system to deal with the increased dependence on plastic could aggravate its mismanagement and leakage into the environment, thus triggering a new environmental crisis. Mandating scientific sterilization and the use of sealed bags for safe disposal of contaminated plastic wastes should be an immediate priority to reduce the risk of transmission to sanitation workers. Investments in circular technologies like feedstock recycling, improving the infrastructure and environmental viability of existing techniques could be the key to dealing with the plastic waste fluxes during such a crisis. Transition towards environmentally friendly materials like bioplastics and harboring new sustainable technologies would be crucial to fighting future pandemics. Although the rollbacks and relaxation of single-use plastic bans may be temporary, their likely implications on the consumer perception could hinder our long-term goals of transitioning towards a circular economy. Likewise, any delay in building international willingness and participation to curb any form of pollution through summits and agendas may also delay its implementation. Reduction in plastic pollution and at the same time promoting sustainable plastic waste management technologies can be achieved by prioritizing our policies to instill individual behavioral as well as social, institutional changes. Incentivizing measures that encourage circularity and sustainable practices, and public-private investments in research, infrastructure and marketing would help in bringing the aforementioned changes. Individual responsibility, corporate action, and government policy are all necessary to keep us from transitioning from one disaster to another.


Subject(s)
Coronavirus Infections , Pandemics , Plastics , Pneumonia, Viral , Waste Management , Betacoronavirus , COVID-19 , Humans , Pandemics/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL